**The Ministry of Human Resource Development** Government of India has notified following two changes in the JEE main pattern from 2018.There shall be no weightage for the 12^{th} class marks in calculating the ranks in the IIT JEE (Main) examination. For the candidates to qualify for the admission in the IITs/NITs/IIITs and such other CFTIs whose admissions are based on the JEE (Advanced)/JEE(Main) ranks, they should have secured at least 75% marks in the 12^{th} class examination, or be in the top 20 percentile in the 12th class examination conducted by the respective Boards. For SC/ST students the qualifying marks would be 65% in the 12th class examination.

## Exam Notification 2018

## Schedule of the JEE Main 2018

While the exam pattern of JEE Main 2018 is essential for candidates to know and plan their preparation, the schedule of the JEE Main 2018 exam is equally important. Candidates can strategize their preparation and act according to the exam schedule. This will help them to acclimatize themselves to the timings. The exam schedule for JEE Main 2018 is given below

Examination Date | Paper | Subject | Exam Timing |

April 8, 2018 | Paper 1 (B.E./B.Tech) | Physics, Chemistry & Mathematics | 9:30 AM to 12:30 PM |

Paper 2 (B.Arch/B.Planning) | Mathematics, Aptitude Test & Drawing Test | 2:00 PM to 5:00 PM | |

April 15 and 16, 2018 | Paper 1 (B.E./B.Tech) | Physics, Chemistry & Mathematics | 9:30 AM to 12:30 PM (1st Shift) 2:00 PM to 5:00 PM (2nd Shift) |

**IIT JEE Main Exam Pattern 2018**

The exam pattern of JEE Main 2018 will be different based on whether the candidate is appearing for Paper I or Paper II. The pattern of each paper is discussed in detail below.

### JEE Main Exam Pattern – Paper 1

**Mode of Exam:**Pen & Paper based (offline) or Computer Based Test (CBT/Online)**Duration of the Exam:**The total time given to candidates is 3 hours**Subjects:**Candidates will be tested in 3 subjects namely – Physics, Chemistry, Mathematics. Questions will be asked from the given JEE Main syllabus 2018**Marking Scheme**: Each correct answer will be awarded 4 marks. Every wrong answer will fetch -1 mark while any answer with no response will not be given any marks**Total Marks awarded:**The paper will be set for 360 marks.**Language / Medium of question paper:**All candidates will be given the option to write the JEE Main exam in English or Hindi except for candidates from Gujarat, Daman & Diu and Dadra and Nagar Haveli who can opt for Gujarati

### IIT JEE Main Exam Pattern – Paper 2

**Mode of Exam:**The JEE Main 2018 exam will be held in pen and paper mode only.

**Total Number of questions:**A total of 90 questions will be asked in the JEE Main 2018 Paper 1. Each section will have 30 questions each**Type of Questions:**Only objective type questions will be asked. Each question will have four options out of which one will be correct**Type of Questions:**While Mathematics and Aptitude will have objective type questions, drawing will have questions that will test the candidates in their drawing and sketching capabilities.**Marking Scheme:**While the objective questions will be awarded 4 marks for a correct answer and a negative mark of -1 for every wrong answer, the drawing questions will be for a total of 70 marks but the marks for each question will be mentioned along with the question only.**Total Marks awarded:**The question paper will be for 390 marks in total.**Language / Medium of question paper:**Candidates will have the choice of writing the paper in English or Hindi, candidates from Gujarat, Diu& Daman, Dadra & Nagar Haveli can choose to write the exam in Gujarati.

# IIT JEE (Advanced) Chemistry Syllabus 2018

### Iit jee Physical chemistry SYLLABUS 2018

**General topics **

Concept of atoms and molecules; Dalton’s atomic theory; Mole concept; Chemical formulae; Balanced chemical equations; Calculations (based on mole concept) involving common oxidation-reduction, neutralisation, and displacement reactions; Concentration in terms of mole fraction, molarity, molality and normality.

**Gaseous and liquid states**

Absolute scale of temperature, ideal gas equation; Deviation from ideality, van der Waals equation; Kinetic theory of gases, average, root mean square and most probable velocities and their relation with temperature; Law of partial pressures; Vapour pressure; Diffusion of gases.

**Atomic structure and chemical bonding**

Bohr model, spectrum of hydrogen atom, quantum numbers; Wave-particle duality, de Broglie hypothesis; Uncertainty principle; Qualitative quantum mechanical picture of hydrogen atom, shapes of s, p and d orbitals; Electronic configurations of elements (up to atomic number 36); Aufbau principle; Pauli’s exclusion principle and Hund’s rule; Orbital overlap and covalent bond; Hybridisation involving s, p and d orbitals only; Orbital energy diagrams for homonuclear diatomic species; Hydrogen bond; Polarity in molecules, dipole moment (qualitative aspects only); VSEPR model and shapes of molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral).

**Energetics**

First law of thermodynamics; Internal energy, work and heat, pressure-volume work; Enthalpy, Hess’s law; Heat of reaction, fusion and vapourization; Second law of thermodynamics; Entropy; Free energy; Criterion of spontaneity.

**Chemical equilibrium**

Law of mass action; Equilibrium constant, Le Chatelier’s principle (effect of concentration, temperature and pressure); Significance of ΔG and ΔG0 in chemical equilibrium; Solubility product, common ion effect, pH and buffer solutions; Acids and bases (Bronsted and Lewis concepts); Hydrolysis of salts.

**Electrochemistry**

Electrochemical cells and cell reactions; Standard electrode potentials; Nernst equation and its relation to ΔG; Electrochemical series, emf of galvanic cells; Faraday’s laws of electrolysis; Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law; Concentration cells.

**Chemical kinetics**

Rates of chemical reactions; Order of reactions; Rate constant; First order reactions; Temperature dependence of rate constant (Arrhenius equation).

**Solid state**

Classification of solids, crystalline state, seven crystal systems (cell parameters a, b, c, α, β, γ), close packed structure of solids (cubic), packing in fcc, bcc and hcp lattices; Nearest neighbours, ionic radii, simple ionic compounds, point defects.

**Solutions**

Raoult’s law; Molecular weight determination from lowering of vapour pressure, elevation of boiling point and depression of freezing point.

**Surface chemistry**

Elementary concepts of adsorption (excluding adsorption isotherms); Colloids: types, methods of preparation and general properties; Elementary ideas of emulsions, surfactants and micelles (only definitions and examples).

**Nuclear chemistry**

Radioactivity: isotopes and isobars; Properties of α, β and γ rays; Kinetics of radioactive decay (decay series excluded), carbon dating; Stability of nuclei with respect to proton-neutron ratio; Brief discussion on fission and fusion reactions.

**IIT JEE Inorganic Chemistry syllabus 2018**

**Isolation/preparation and properties of the following non-metals**

Boron, silicon, nitrogen, phosphorus, oxygen, sulphur and halogens; Properties of allotropes of carbon (only diamond and graphite), phosphorus and sulphur.

**Preparation and properties of the following compounds**

Oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium, potassium, magnesium and calcium; Boron: diborane, boric acid and borax; Aluminium: alumina, aluminium chloride and alums; Carbon: oxides and oxyacid (carbonic acid); Silicon: silicones, silicates and silicon carbide; Nitrogen: oxides, oxyacids and ammonia; Phosphorus: oxides, oxyacids (phosphorus acid, phosphoric acid) and phosphine; Oxygen: ozone and hydrogen peroxide; Sulphur: hydrogen sulphide, oxides, sulphurous acid, sulphuric acid and sodium thiosulphate; Halogens: hydrohalic acids, oxides and oxyacids of chlorine, bleaching powder; Xenon fluorides.

**Transition elements (3d series)**

Definition, general characteristics, oxidation states and their stabilities, colour (excluding the details of electronic transitions) and calculation of spin-only magnetic moment; Coordination compounds: nomenclature of mononuclear coordination compounds, cis-trans and ionisation isomerisms, hybridization and geometries of mononuclear coordination compounds (linear, tetrahedral, square planar and octahedral).

**Preparation and properties of the following compounds:**

Oxides and chlorides of tin and lead; Oxides, chlorides and sulphates of Fe2+, Cu2+ and Zn2+; Potassium permanganate, potassium dichromate, silver oxide, silver nitrate, silver thiosulphate.

**Ores and minerals**

Commonly occurring ores and minerals of iron, copper, tin, lead, magnesium, aluminium, zinc and silver.

**Extractive metallurgy**

Chemical principles and reactions only (industrial details excluded); Carbon reduction method (iron and tin); Self reduction method (copper and lead); Electrolytic reduction method (magnesium and aluminium); Cyanide process (silver and gold).

**Principles of qualitative analysis:**

Groups I to V (only Ag+, Hg2+, Cu2+, Pb2+, Bi3+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+); Nitrate, halides (excluding fluoride), sulphate and sulphide.

### IIT JEE Organic Chemistry Syllabus 2018

**Concepts**

Hybridisation of carbon; σ and π-bonds; Shapes of simple organic molecules; Structural and geometrical isomerism; Optical isomerism of compounds containing up to two asymmetric centres, (R,S and E,Z nomenclature excluded); IUPAC nomenclature of simple organic compounds (only hydrocarbons, mono-functional and bi-functional compounds); Conformations of ethane and butane (Newman projections); Resonance and hyperconjugation; Keto-enoltautomerism; Determination of empirical and molecular formulae of simple compounds (only combustion method); Hydrogen bonds: definition and their effects on physical properties of alcohols and carboxylic acids; Inductive and resonance effects on acidity and basicity of organic acids and bases; Polarity and inductive effects in alkyl halides; Reactive intermediates produced during homolytic and heterolytic bond cleavage; Formation, structure and stability of carbocations, carbanions and free radicals.

**Preparation, properties and reactions of alkanes**

Homologous series, physical properties of alkanes (melting points, boiling points and density); Combustion and halogenation of alkanes; Preparation of alkanes by Wurtz reaction and decarboxylation reactions.

**Preparation, properties and reactions of alkenes and alkynes**

Physical properties of alkenes and alkynes (boiling points, density and dipole moments); Acidity of alkynes; Acid catalysed hydration of alkenes and alkynes (excluding the stereochemistry of addition and elimination); Reactions of alkenes with KMnO4 and ozone; Reduction of alkenes and alkynes; Preparation of alkenes and alkynes by elimination reactions; Electrophilic addition reactions of alkenes with X2, HX, HOX and H2O (X=halogen); Addition reactions of alkynes; Metal acetylides.

**Reactions of benzene**

Structure and aromaticity; Electrophilic substitution reactions: halogenation, nitration, sulphonation, Friedel-Crafts alkylation and acylation; Effect of o-, m- and p-directing groups in monosubstituted benzenes.

**Phenols**

Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation); Reimer-Tieman reaction, Kolbe reaction.

**Characteristic reactions of the following (including those mentioned above)**

Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions, nucleophilic substitution reactions; Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl2/concentrated HCl, conversion of alcohols into aldehydes and ketones; Ethers: Preparation by Williamson’s Synthesis; Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro reaction; haloform reaction and nucleophilic addition reactions (Grignard addition); Carboxylic acids: formation of esters, acid chlorides and amides, ester hydrolysis; Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, azo coupling reaction of diazonium salts of aromatic amines, Sandmeyer and related reactions of diazonium salts; carbylamine reaction; Haloarenes: nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding Benzyne mechanism and Cine substitution).

**Carbohydrates**

Classification; mono- and di-saccharides (glucose and sucrose); Oxidation, reduction, glycoside formation and hydrolysis of sucrose.

**Amino acids and peptides**

General structure (only primary structure for peptides) and physical properties.

**Properties and uses of some important polymers**

Natural rubber, cellulose, nylon, teflon and PVC.

**Practical organic chemistry:**

Detection of elements (N, S, halogens); Detection and identification of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro; Chemical methods of separation of mono-functional organic compounds from binary mixtures.

# IIT JEE (Advanced) Mathematics syllabus 2018

**Algebra**

Algebra of complex numbers, addition, multiplication, conjugation, polar representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations.

Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots.

Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers.

Logarithms and their properties.

Permutations and combinations, binomial theorem for a positive integral index, properties of binomial coefficients.

Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables.

Addition and multiplication rules of probability, conditional probability, Bayes Theorem, independence of events, computation of probability of events using permutations and combinations.

**Trigonometry**

Trigonometric functions, their periodicity and graphs, addition and subtraction formulae, formulae involving multiple and sub-multiple angles, general solution of trigonometric equations.

Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle formula and the area of a triangle, inverse trigonometric functions (principal value only).

**Analytical geometry**

Two dimensions: Cartesian coordinates, distance between two points, section formulae, shift of origin.

Equation of a straight line in various forms, angle between two lines, distance of a point from a line; Lines through the point of intersection of two given lines, equation of the bisector of the angle between two lines, concurrency of lines; Centroid, orthocentre, incentre and circumcentre of a triangle.

Equation of a circle in various forms, equations of tangent, normal and chord.

Parametric equations of a circle, intersection of a circle with a straight line or a circle, equation of a circle through the points of intersection of two circles and those of a circle and a straight line.

Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and eccentricity, parametric equations, equations of tangent and normal.

Locus problems.

Three dimensions: Direction cosines and direction ratios, equation of a straight line in space, equation of a plane, distance of a point from a plane.

**Differential calculus**

Real valued functions of a real variable, into, onto and one-to-one functions, sum, difference, product and quotient of two functions, composite functions, absolute value, polynomial, rational, trigonometric, exponential and logarithmic functions.

Limit and continuity of a function, limit and continuity of the sum, difference, product and quotient of two functions, L’Hospital rule of evaluation of limits of functions.

Even and odd functions, inverse of a function, continuity of composite functions, intermediate value property of continuous functions.

Derivative of a function, derivative of the sum, difference, product and quotient of two functions, chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions.

Derivatives of implicit functions, derivatives up to order two, geometrical interpretation of the derivative, tangents and normals, increasing and decreasing functions, maximum and minimum values of a function, Rolle’s theorem and Lagrange’s mean value theorem.

**Integral calculus**

Integration as the inverse process of differentiation, indefinite integrals of standard functions, definite integrals and their properties, fundamental theorem of integral calculus.

Integration by parts, integration by the methods of substitution and partial fractions, application of definite integrals to the determination of areas involving simple curves.

Formation of ordinary differential equations, solution of homogeneous differential equations, separation of variables method, linear first order differential equations.

**Vectors**

Addition of vectors, scalar multiplication, dot and cross products, scalar triple products and their geometrical interpretations.

# IIT JEE (Advanced) Physics Syllabus 2018

**General**

Units and dimensions, dimensional analysis; least count, significant figures; Methods of measurement and error analysis for physical quantities pertaining to the following experiments: Experiments based on using Vernier calipers and screw gauge (micrometer), Determination of g using simple pendulum, Young’s modulus by Searle’s method, Specific heat of a liquid using calorimeter, focal length of a concave mirror and a convex lens using u-v method, Speed of sound using resonance column, Verification of Ohm’s law using voltmeter and ammeter, and specific resistance of the material of a wire using meter bridge and post office box.

**Mechanics**

Kinematics in one and two dimensions (Cartesian coordinates only), projectiles; Uniform circular motion; Relative velocity.

Newton’s laws of motion; Inertial and uniformly accelerated frames of reference; Static and dynamic friction; Kinetic and potential energy; Work and power; Conservation of linear momentum and mechanical energy.

Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic collisions.

Law of gravitation; Gravitational potential and field; Acceleration due to gravity; Motion of planets and satellites in circular orbits; Escape velocity.

Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of inertia of uniform bodies with simple geometrical shapes; Angular momentum; Torque; Conservation of angular momentum; Dynamics of rigid bodies with fixed axis of rotation; Rolling without slipping of rings, cylinders and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid bodies.

Linear and angular simple harmonic motions.

Hooke’s law, Young’s modulus.

Pressure in a fluid; Pascal’s law; Buoyancy; Surface energy and surface tension, capillary rise; Viscosity (Poiseuille’s equation excluded), Stoke’s law; Terminal velocity, Streamline flow, equation of continuity, Bernoulli’s theorem and its applications.

Wave motion (plane waves only), longitudinal and transverse waves, superposition of waves; Progressive and stationary waves; Vibration of strings and air columns; Resonance; Beats; Speed of sound in gases; Doppler effect (in sound).

**Thermal physics**

Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat conduction in one dimension; Elementary concepts of convection and radiation; Newton’s law of cooling; Ideal gas laws; Specific heats (Cv and Cp for monoatomic and diatomic gases); Isothermal and adiabatic processes, bulk modulus of gases; Equivalence of heat and work; First law of thermodynamics and its applications (only for ideal gases); Blackbody radiation: absorptive and emissive powers; Kirchhoff’s law; Wien’s displacement law, Stefan’s law.

**Electricity and magnetism**

Coulomb’s law; Electric field and potential; Electrical potential energy of a system of point charges and of electrical dipoles in a uniform electrostatic field; Electric field lines; Flux of electric field; Gauss’s law and its application in simple cases, such as, to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell.

Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series and parallel; Energy stored in a capacitor.

Electric current; Ohm’s law; Series and parallel arrangements of resistances and cells; Kirchhoff’s laws and simple applications; Heating effect of current.

Biot–Savart’s law and Ampere’s law; Magnetic field near a current-carrying straight wire, along the axis of a circular coil and inside a long straight solenoid; Force on a moving charge and on a current-carrying wire in a uniform magnetic field.

Magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop; Moving coil galvanometer, voltmeter, ammeter and their conversions.

Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual inductance; RC, LR and LC circuits with d.c. and a.c. sources.

**Optics**

Rectilinear propagation of light; Reflection and refraction at plane and spherical surfaces; Total internal reflection; Deviation and dispersion of light by a prism; Thin lenses; Combinations of mirrors and thin lenses; Magnification.

Wave nature of light: Huygen’s principle, interference limited to Young’s double-slit experiment.

**Modern physics**

Atomic nucleus; α, β and γ radiations; Law of radioactive decay; Decay constant; Half-life and mean life; Binding energy and its calculation; Fission and fusion processes; Energy calculation in these processes.

Photoelectric effect; Bohr’s theory of hydrogen-like atoms; Characteristic and continuous X-rays, Moseley’s law; de Broglie wavelength of matter waves.

### ARCHITECTURE APTITUDE TEST

**Freehand drawing**

This would comprise of simple drawing depicting the total object in its right form and proportion, surface texture, relative location and details of its component parts in appropriate scale. Common domestic or day-to-day life usable objects like furniture, equipment, etc., from memory.

**Geometrical drawing**

Exercises in geometrical drawing containing lines, angles, triangles, quadrilaterals, polygons, circles, etc. Study of plan (top view), elevation (front or side views) of simple solid objects like prisms, cones, cylinders, cubes, splayed surface holders, etc.

**Three-dimensional perception**

Understanding and appreciation of three-dimensional forms with building elements, colour, volume and orientation. Visualization through structuring objects in memory.

**Imagination and aesthetic sensitivity**

Composition exercise with given elements. Context mapping. Creativity check through innovative uncommon test with familiar objects. Sense of colour grouping or application.

**Architectural awareness**

General interest and awareness of famous architectural creations – both national and international, places and personalities (architects, designers, etc.) in the related domain.

**Important Dates regarding IIT JEE Main Admit Card 2018**

Events | Important Dates |

Last Date to Register for JEE Main | January 1, 2018 |

Release of JEE Main 2018 Admit Card | March 12, 2018 |

JEE Main Paper I (Offline) | April 8, 2018 |

JEE Main Paper II (Offline) | April 8, 2018 |

JEE Main Online Exam | April 15 and 16, 2018 |

Publishing of Answer Keys | April 24 to 27, 2018 |

Declaration of Result for Paper I | April 30, 2018 |

**IIT JEE mains Admit Card : ** Download

iit jee coaching near me

iit jee coaching in laxmi nagar

iit jee coaching in laxmi nagar delhi

iit jee coaching in allahadbad

iit jee coaching in mukherjee nagar

iit jee coaching in patna

iit jee coaching in vihar

iit jee coaching in lucknow

iit jee coaching in laxmi nagar new delhi

iit jee coaching classes in laxmi nagar

iit jee coaching center in delhi

iit jee mains coaching in laxmi nagar

best iit jee coaching classes in laxmi nagar

top 5 iit jee coaching institute in laxmi nagar

top 5 iit jee coaching in delhi

top 10 iit jee mains coaching in delhi

top 10 iit jee mains coaching

iit jee coaching institute in delhi

iit jee coaching in gurgaon

iit jee coaching in faridabad

iit jee coaching in dehradun

iit jee coaching faculty jobs

iit jee coaching gurugram haryana

iit jee coaching in ghaziabad

iit jee coaching in noida

iit jee coaching in dwarka

iit jee coaching

iit jee coaching advertisement

iit jee coaching at kota

iit jee coaching ahmedabad

iit jee coaching at hyderabad

iit jee coaching at bhubaneswar

iit-jee coaching at kolkata

iit jee coaching at home

iit jee coaching agra

iit jee coaching allahabad

iit jee coaching at indore

iit jee coaching bangalore

iit jee coaching business

iit jee coaching bengaluru karnataka

iit jee coaching brochure

iit jee coaching bhopal

iit jee coaching books

iit jee coaching bhubaneswar

iit jee coaching bhilai

iit jee coaching by iitians

iit jee coaching by correspondence

iit jee coaching centres

iit jee coaching classes in bangalore

iit jee coaching classes in pune

iit jee coaching centres in chennai

iit jee coaching classes in delhi

iit jee coaching classes in chennai

iit jee coaching classes in patna

iit jee coaching classes in hyderabad

iit jee coaching centres near me

iit jee coaching chennai

iit jee coaching delhi

iit jee coaching dehradun

iit jee coaching dubai

iit jee coaching dvd

iit jee coaching dhanbad

iit jee coaching dwarka

iit-jee distance coaching

excel iit jee coaching delhi new delhi delhi

free iit jee coaching dvd

iit jee coaching material download

iit jee entrance coaching centers in kerala

iit jee entrance coaching

iit jee entrance coaching in chennai

iit jee examination coaching institutes in chennai

iit jee examination coaching institutes

iit-jee entrance coaching in kerala

iit jee exam coaching

iit jee entrance coaching centre

iit jee entrance coach apk

iit jee coaching in erode

iit jee coaching franchise

iit jee coaching for class 8

iit jee coaching fee

iit jee coaching fees in mumbai

iit jee coaching faculty salary

iit jee coaching faculty recruitment

iit jee coaching fee structure

iit jee coaching faculty jobs in lucknow

iit jee coaching for poor students

franchise for iit jee coaching

faculty for iit-jee coaching

fees for iit-jee coaching

scholarship for iit jee coaching

list of iit jee coaching institutes in kota

ranking of iit jee coaching institutes

list of iit jee coaching institutes in delhi

list of iit jee coaching institutes in chandigarh

list of iit jee coaching institutes in patna

list of iit jee coaching institutes

iit jee coaching gurgaon

iit jee coaching gwalior

iit jee coaching guwahati

iit jee coaching ghaziabad

iit jee coaching gandhinagar

iit jee coaching in greater noida

iit-jee coaching in gorakhpur

iit jee coaching in gujarat

iit jee coaching in goa

iit jee coaching hyderabad

narayana iit jee coaching hyderabad

time iit jee coaching hyderabad

iit jee coaching in haridwar

aakash iit jee coaching hyderabad

Best coaching for 10th board exam in laxmi nagar…

Regular classes for school going student.

Physics- Expert teacher with 10 year experience..

Chemistry – After completing P.hd teaching for 10th

## 0 responses on "iit jee coaching"